Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6270, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805579

ABSTRACT

We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.


Subject(s)
Focal Adhesion Kinase 2 , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Mice , Animals , Humans , Child , Focal Adhesion Kinase 2/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction/genetics , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Integrins/metabolism , T-Lymphocytes/metabolism , Phosphorylation
2.
FASEB J ; 34(1): 706-719, 2020 01.
Article in English | MEDLINE | ID: mdl-31914642

ABSTRACT

Anti-Müllerian hormone (Amh) is a peptide factor that is known to regulate sexual differentiation and gonadal function in mammals. Although Amh is also suggested to be associated with cognitive development and function in the postnatal brain, little is known about its expression or direct effects on neuronal activities in the hippocampus. Therefore, we assessed Amh and its receptor expression in the hippocampus of male and female mice using PCR, Western blot, and immunofluorescence staining. While Amh-specific receptor expression was comparable between males and females, mRNA and protein levels of Amh were higher in females than those of males. Electrophysiological recordings on acute hippocampal slices showed that exogenous Amh protein addition increased synaptic transmission and long-term synaptic plasticity at the Cornu Ammonis (CA) 3-CA1 synapses. Amh exposure also increased the excitatory postsynaptic potential at CA1 synapses. Our findings support direct and rapid actions of Amh as a paracrine and/or autocrine factor in regulating hippocampal neuronal activities. Data provide functional evidence of Amh-mediated postsynaptic modulation of synaptic transmission and Amh-regulated long-term synaptic plasticity in the hippocampus. These results suggest a potential role of Amh in learning and memory, and a possible cause of the sex differences in cognitive development and function.


Subject(s)
Anti-Mullerian Hormone/pharmacology , Excitatory Postsynaptic Potentials/physiology , Neuronal Plasticity/physiology , Receptors, Peptide/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Synaptic Transmission/physiology , Animals , Excitatory Postsynaptic Potentials/drug effects , Female , Hippocampus/drug effects , Hippocampus/physiology , Learning/drug effects , Learning/physiology , Male , Memory/drug effects , Memory/physiology , Mice , Neuronal Plasticity/drug effects , Neurons/metabolism , Neurons/physiology , Receptors, Peptide/drug effects , Receptors, Transforming Growth Factor beta/drug effects , Sex Characteristics , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...